Burning a Graph

Palestrante: Prof. Dieter Rautenbach, Universität Ulm.

Nova Data: 26 de novembro de 2015, 13h

Novo Local: IME, Campus Gragoatá, Sala 407

Resumo: Motivated by a graph theoretic process intended to measure the speed of the spread of contagion in a graph, Bonato et al. [Burning a Graph as a Model of Social Contagion, Lecture Notes in Computer Science 8882 (2014) 13-22] define the burning number b(G) of a graph G as the smallest integer k for which there are vertices x1,...,xk such that for every vertex u of G, there is some i∈{1,...,k} with distG(u,xi) ≤ k-i, and distG(xi,xj) ≥ j-i  for every i,j∈{1,...,k}.

For a connected graph G of order n, they prove b(G) ≤ ⌈√n -1, and conjecture b(G)  ⌈√n⌉. We show that

b(G) ≤ √(32/19·n/(1-ε)) + √(27/(19ε))

b(G) ≤ √(12n/7)+3 ≈ 1.309 √n+3

for every connected graph G of order n and every 0<ε<1. For a tree T of order n with n2 vertices of degree 2, and n3 vertices of degree at least 3, we show

b(T) ≤ √(n+n2+1/4)  + 1/2

b(T) ≤ √n + n≥3

Finally, we show that the problem of deciding whether b(G) ≤ k for a given graph G and a given integer k is NP-complete even when restricting the graphs G to either the unions of paths or to trees that have exactly one vertex of degree at least 3.

The presented results are joint work with Stephane Bessy.

3.

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler