Algebraic solutions of Irregular Garnier systems

Speaker: Frank Loray, CNRS-IRMAR, Rennes.

Date: 27 mar 2019, 14h.

Place: Room 407, Bloco H, Campus Gragoatá, UFF.

Abstract: We prove that algebraic solutions of Garnier systems in the irregular case are of two types, generalizing a result of Ohyama and Okumura for Painlevé equations (rank N=1). The so called "classical solutions" come from isomonodromic deformations of linear equations with diagonal or dihedral differential Galois group; we give a complete list in the rank N = 2 case (two indeterminates). The "pull-back solutions" come from deformations of coverings over a fixed degenerate hypergeometric equation; we provide a complete list when the differential Galois group is SL2(C).

By the way, we have a complete list of algebraic solutions for the rank N = 2 irregular Garnier systems. The rank N=1 case correspond to Painlevé equations I to V and is classical; it has been revisited from this point of view by Ohyama and Okumura.

This is joint work with Karamoko Diarra (Bamako University, Mali).

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler