Reducing graph transversals via edge contractions

Speaker: Vinícius Fernandes dos Santos, UFMG.

Date: 30 jun 2021, 14h.

Place: Google Meet: meet.google.com/npz-qztp-riw.

Abstract: For a graph parameter $\pi$, the Contraction($\pi$) problem consists in, given a graph G and two positive integers k,d, deciding whether one can contract at most k edges of G to obtain a graph in which $\pi$ has dropped by at least d. Galby et al. [ISAAC 2019, MFCS 2019] recently studied the case where $\pi$ is the size of a minimum dominating set. We focus on graph parameters defined as the minimum size of a vertex set that hits all the occurrences of graphs in a collection H according to a fixed containment relation. We prove co-NP-hardness results under some assumptions on the graphs in H, which in particular imply that Contraction($\pi$) is co-NP-hard even for fixed k=d=1 when $\pi$ is the size of a minimum feedback vertex set or an odd cycle transversal. In sharp contrast, we show that when $\pi$ is the size of a minimum vertex cover, the problem is in XP parameterized by d.

Joint work with Paloma T. Lima, Ignasi Sau and Uéverton S. Souza, available at arXiv:2005.01460.

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler