Thesis Defense: Abel maps for nodal curves via tropical geometry

Ph.D. Candidate: Sally Andria Vieira da Silva

Thesis Committee: Marco Pacini (Advisor, UFF)
Alex Abreu (Co-advisor, UFF)
Eduardo Esteves (IMPA)
Ethan Cotterill (UFF)
Juliana Coelho (UFF)
Margarida Melo (Universita Roma Tre)
Nivaldo Medeiros (UFF)
Rodrigo Gondim (UFRPE)

Date: 14 aug 2020, 10h30.

Place: Google Meet: meet.google.com/skw-pprm-civ 

Abstract: Seja π:C→B uma suavização regular de uma curva nodal com componentes suaves e uma seção σ de π através do lugar suave. Sejam μ e L uma polarização e um feixe invertível de grau k sobre C/B. O mapa de Abel αLd é o mapa racional αLd:Cd→Jμσ que leva uma upla pontos (Q1,...,Qd) sobre a fibra Cb de π no feixe OCb(Q1+...+Qd-dσ(b))⊗L|Cb. Aqui Jμσ denota a Jacobian compactificada de Esteves. Uma questão interessante é encontrar uma resolução explícita do mapa αLd. Nós traduzimos este problema num problema combinatorial explícito, por meio de geometria tropical e tórica. A solução do problema combinatorial dá origem a uma resolução explícita do mapa de Abel. Utilizamos esta técnica para construir todos os mapas de Abel de grau 1 e dar uma resolução do mapa de Abel-Jacobi de grau 2.

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler