Thesis Defense: Self-Expanders of Mean Curvature Flow and Constant Weighted Mean Curvature Hypersuperfaces

Ph.D. Candidate: Saul Ancari Villca

Thesis Committee: Xu Cheng (Advisor, UFF)
Graham Andrew Smith (UFRJ)
Gregório Manoel da Silva Neto (UFAL)
Matheus Brioschi Herkenhoff Vieira (UFES)
Keti Tenenblat (UnB)
Abigail Silva Duarte Folha (UFF)
Detang Zhou (UFF)

Date: 27 mai 2021, 15h.

Place: Google Meet: meet.google.com/jcm-xpdd-yvs.

Abstract: Nesta tese, estudamos self-expanders do fluxo de curvatura média e hipersuperfícies especiais com curvatura média com peso constante no espaço euclidiano.

Na primeira parte desta tese, estudamos principalmente hipersuperfícies self-expanders imersas no espaço euclidiano cujas curvaturas médias apresentam alguns controles de crescimento linear. Discutimos o crescimento do volume e a finitude dos volumes com peso. Obtemos algumas propriedades que caracterizam os hiperplanos passando pela origem como self-expanders. Fornecemos condições suficientes para que as hipersuperfícies self-expanders sejam produtos de curvas self-expanders e subespaços planos. Também estudamos os espectros do Laplaciano com peso e do operador L-estabilidade. O limite superior do ínfimo do espectro do Laplaciano com peso e os limites superior e inferior do ínfimo do espectro do operador L-estabilidade são fornecidos.

Na segunda parte, estudamos dois tipos de hipersuperfícies com curvatura média com peso constante no espaço euclidiano: λ-hipersuperfícies e λ-self-expanders, que são as hipersuperfícies Σ cuja curvatura média H satisfaz H=λ+<x,n>/2H=λ+<x,n>/2, respectivamente, onde λ é constante, é o vetor posição em Rn+1 e n é o campo normal unitário exterior sobre Σ. Elas são soluções do problema isoperimétrico gaussiano e do problema isoperimétrico com a mesma forma do volume com peso dos self-expanders, respectivamente. Obtivemos vários resultados que caracterizam os hiperplanos, esferas e cilindros como λ-hipersuperfícies e λ-self-expanders, respectivamente. Além disso, no caso de λ-self-expanders propriamente imersos, obtemos que o espectro do Laplaciano com peso é discreto, fornecemos os limites superior e inferior para o ínfimo do espectro do Laplaciano com peso e provamos uma desigualdade entre o ínfimo do espectro do Laplaciano com peso e o ínfimo do espectro do operador L-estabilidade.

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler

deneme bonusu veren siteler