Obstruções topológicas para a existência de métricas Riemannianas com curvatura escalar não-negativa e bordo mean convexo

Speaker: Franciele Conrado, UFF.

Date: 08 dec 2022, 14h.

Place: Room 407, Bloco H, Campus Gragoatá, UFF.

Abstract: Utilizaremos o método das hipersuperfícies mínimas com bordo livre para encontrar obstruções topológicas para a existência de métricas Riemannianas com curvatura escalar não-negativa e bordo mean convexo em variedades compactas de dimensão menor ou igual a 7. A partir destas obstruções, destacaremos alguns exemplos interessantes de variedades que não admitem uma métrica Riemanniana com curvatura escalar não-negativa e bordo mean convexo ou mesmo com curvatura escalar positiva e bordo mean convexo.

 

Funcionais de Curvatura e o Funcional Norma L² da Segunda Forma Fundamental Sem Traço

Speaker: Thiago Pires, UFES.

Date: 21 nov 2022, 18h30.

Place: Google Meet: https://meet.google.com/xxb-jwdn-iwn.

Abstract: Definimos um funcional dependente das curvaturas média e escalar, para hipersuperfíces de dimensão n imersas em uma variedade Riemanniana, e calculamos sua primeira variação, obtendo a equação de Euler-Lagrange que caracteriza os pontos críticos. No caso em que o ambiente é uma forma espacial de curvatura constante, calculamos também a segunda variação, obtendo um critério para definir a estabilidade destes pontos em termo de invariantes geométricos que dependem apenas da primeira e da segunda forma fundamental. Como forma de demonstrar a aplicabilidade dos resultados obtidos anteriormente, estudamos o funcional de curvatura dado pela integral da norma ao quadrado da segunda forma fundamental sem traço, obtendo informações sobre pontos críticos com duas curvaturas principais distintas, com uma atenção particular para as hipersuperfícies de rotação e os toros de Clifford. Além disso, estudamos a estabilidade de alguns pontos críticos conhecidos, e por fim reinterpretamos alguns teoremas de gap de modo a obter mais informações sobre os pontos críticos.

 

Quantidades conservadas em Relatividade Geral: o caso de dados iniciais com fronteira não-compacta

Speaker: Levi de Lima, UFC.

Date: 11 feb 2020, 14h.

Place: Room 205, Bloco H, Campus Gragoatá, UFF.

Abstract: Sabe-se que considerações de simetria, baseadas na existência de certas cargas de Noether, levam à definição de várias quantidades conservadas (energia, momento linear, centro de massa, etc.) para soluções das equações de campo de Einstein associadas a dados iniciais assintoticamente planos, e uma parte considerável do progresso em Relatividade Matemática nas últimas décadas consistiu em estabelecer propriedades fundamentais para tais quantidades (teoremas de massa positiva, desigualdades de Penrose, etc.). Nesta palestra, inicialmente recordamos esta teoria clássica e então indicamos como alguns de seus aspectos podem ser estendidos ao contexto em que o dado inicial possui fronteira não-compacta (trabalho conjunto com S. Almaraz, E. Barbosa e L. Mari). Nossa apresentação enfatiza as aplicações à Análise Geométrica (problema de Yamabe) e pretende ser acessível a uma audiência variada.

 

Geometry Day IV

Date: 29 nov 2019, 11h30.

Place: 4th Floor, Bloco H, Campus Gragoatá, UFF.

"Geometry Day" is a (semi)annual event directed to explore cutting edge research in contemporary Geometry. Researchers of diverse backgrounds participate in the event, providing a panoramic view of many topics, and further promoting our institute's international profile.

Program:

11.30-12.30 - Ilkka Holopainen (Helsinki): "Asymptotic Plateau problem for prescribed mean curvature hypersurfaces"
12.30-14.00 - Almoço
14.00-15.00 - Pedro Manfrim (Unicamp): "Weak Higgs-Hermite-Einstein metrics over ACyl manifolds"
15.00-15.30 - Pausa
15.30-16.30 - Matias del Hoyo (Uff): "An overview on Poisson and Dirac geometries"

Previous Editions:

• GD 0: Reimundo Heluani (IMPA), Letterio Gatto (Torino, IT), Lázaro Rodríguez (UFRJ)
• GD I: Alessia Mandini (PUC-Rio), Gonçalo Oliveira (UFF), Ethan Cotterill (UFF)
• GD II: Cecília Salgado (UFRJ), Dmitri Panov (King’s College London, UK), Vinícius Ramos (IMPA)
• GD III: Maria Amélia Salazar (UFF), Misha Verbitsky (IMPA/HSE), Liviu Ornea (Bucharest, RO).

 

Stability of constant mean curvature surfaces in three dimensional warped product manifolds

Speaker: Gregório Silva Neto, UFAL.

Date: 13 nov 2019, 14h.

Place: Room 407, Bloco H, Campus Gragoatá, UFF.

Abstract: In this talk we will show that stable, compact without boundary, oriented, nonzero constant mean curvature surfaces in the de Sitter-Schwarzschild and Reissner-Nordstrom manifolds are the slices, provided its mean curvature satisfies some positive lower bound. More generally, we show that stable, compact without boundary, oriented nonzero constant mean curvature surfaces in a large class of three dimensional warped product manifolds are embedded topological spheres, provided the mean curvature satisfies a positive lower bound depending only on the ambient curvatures. We conclude showing that a stable, compact without boundary, nonzero constant mean curvature surface in a general Riemannian is a topological sphere provided its mean curvature has a lower bound depending only on the scalar curvature of the ambient space and the squared norm of the mean curvature vector field of the immersion of the ambient space in some Euclidean space.

 

Pagina 1 de 2