Speaker: Monique Malicet, Université Paris-Est (Marne la Vallée).
Date: 12 jul 2019, 16h30.
Place: Room 407, Bloco H, Campus Gragoatá, UFF.
Abstract: Sendo K um conjunto de Cantor da linha real R, chamamos difeomorfismo de K uma bijeção de K que é localmente a restrição de um difeomorfismo de R. Nos interessamos nas ações de grupo em K por difeomorfismos. Depende apriori muito de K, mas mostramos alguns resultados gerais. Por exemplo, um grupo finimente gerado G de difeomorfismos C^2 de K satisfaz a propriedade de Burnside: se todo elemento de G tem ordem finita, então G é finito. Também, G sempre contém um semigrupo livre com dois geradores a não ser que ele seja virtualmente abeliano. Disso podemos deduzir por exemplo que SL(3,Z) não pode agir fielmente em K por difeomorfismos C^2.
Este trabalho é feito em colaboração com Emmanuel Militon.