Ph.D. Candidate: Josefa Genyle do Nascimento Santana
Thesis Committee: Gabriel Calsamiglia Mendlewicz (Advisor, UFF)
Bertrand Deroin (Université De Cergy-Pontoise)
Adolfo Guillot (UNAM)
Thiago Fassarella do Amaral (UFF)
Gaël Cousin (UFF)
Date: 28 jul 2020, 14h.
Place: Google Meet: meet.google.com/hji-hutq-dts
Abstract: Neste trabalho, definiremos estruturas projetivas singulares do tipo fuchsiana em superfícies e provaremos o teorema de existência de estruturas projetivas singulares do tipo fuchsiana com representação de monodromia ρ:π1(S*)→PSL2(C) dada, onde S* é uma superfície de Riemann de tipo finito, e analisaremos a relação entre estruturas projetivas com mesma monodromia e o flip de uma fibra. De um ponto de vista analítico, calcularemos a derivada Schwarziana das cartas projetivas singulares do tipo fuchsiana e soluções de equações Schwarzianas dada uma diferencial quadrática meromorfa com polo duplo. Faremos um estudo local da geometria/topologia da aplicação developing que define a estrutura projetiva ao redor de uma cúspide e estenderemos a cirurgia de movimento de pontos de ramificação quando uma das singularidades é do tipo fuchsiana. Por fim, daremos interpretações álgebro-geométricas para essas estruturas projetivas onde obteremos fórmulas envolvendo invariantes topológicos da superfície e invariantes analíticos da folheação e fibrado.